
Matemáticas a tu alcance
"Si la gente no piensa que las matemáticas son simples, es sólo porque no se dan cuenta de lo complicada que es la vida"
-John Louis von Neumann.
Aplicaciones del algebra lineal
De una empresa que produce elementos arquitectónicos, se tiene la siguiente información: En el producto 1 se gastan 3400 gramos de plástico, 1200 gramos de metal y 800 gramos de madera. En el producto 2 se consumen 1100 gramos de plástico, 900 gramos de metal y 1200 gramos de madera. Para el producto 3 se consumen 800 gramos de plástico, 750 gramos de metal y 600 gramos de madera. Si en una semana a la empresa entraron 960 kilos de plástico, 573 kilos de metal y 540 kilos de madera ¿Cuántos elementos del producto 1, cuántos del producto 2 y cuántos elementos del producto 3 saldrán de la empresa? [Recuerde que un kilo son mil gramos]
Producto 1 : 3400 g plástico
1200 g metal
800 g madera
Producto 2: 1100 g plástico
900 g metal
1200 g madera
Producto 3: 800 g plástico
750 g metal
600 g madera
La cantidad consumida es:
750,000 g metal
600,000 g madera
960,000 g plástico
Definimos
X = producto 1
Y = producto 2
Z = producto 3
El sistema de ecuaciones queda de la siguiente manera:
800X + 1.200Y + 600Z = 600.000
3.400X + 1.100Y 800Z = 960.000
1.200X 900Y + 750Z = 750.000


Este vídeo también te puede servir:
Se denomina álgebra a la rama de las matemáticas que se orienta a la generalización de las operaciones aritméticas a través de signos, letras y números. En el álgebra, las letras y los signos representan a otra entidad a través de un simbolismo.
Lineal, por su parte, es un adjetivo que refiere a lo vinculado a una línea (una raya o una sucesión). En el ámbito de la matemática, la idea de lineal alude a aquello que cuenta con consecuencias que son proporcionales a una causa.
Se conoce como álgebra lineal a la especialización del álgebra que trabaja con matrices, vectores, espacios vectoriales y ecuaciones de tipo lineal. Se trata de un área del conocimiento que se desarrolló especialmente en la década de 1840 con los aportes del alemán Hermann Grassmann (1809-1877) y el irlandés William Rowan Hamilton (1805–1865), entre otros matemáticos.
Los espacios vectoriales son estructuras que surgen cuando se registra un conjunto que no está vacío, una operación externa y una operación interna. Los vectores son los elementos que forman parte del espacio vectorial. En cuanto a las matrices, se trata de un conjunto bidimensional de números que permiten la representación de los coeficientes que tienen los sistemas de ecuaciones lineales.
William Rowan Hamilton es uno de los nombres más destacados del ámbito de las matemáticas, ya que fue quien acuñó el término “vector”, además de haber creado los cuaterniones. Este concepto se extiende de los números reales, así como ocurre con los complejos, y se trata de grupos de cuatro números resultan muy útiles al estudiar cantidades en tres dimensiones que esperan contar con una magnitud y una dirección.
Los números que componen el cuaternión deben satisfacer determinadas reglas de adición, multiplicación e igualdad. Este descubrimiento tuvo una importancia considerable para las matemáticas. Con respecto al conjunto de los números reales, se define como aquél en el cual se encuentran los racionales (el cero, los positivos y los negativos) y los irracionales (aquéllos que no pueden ser expresados).
Siguiendo con la definición de los elementos con los que trata el álgebra lineal, es importante saber que un sistema de ecuaciones lineales se compone, como su nombre lo indica, de ecuaciones lineales (un conjunto de ecuaciones que son de primer grado), definidas sobre un anillo conmutativo o un cuerpo.
EJERCICIOS: